

Paper Reading

蒋磊 2018.12.1

- Learning Deep Features for Discriminative Localization, CVPR 2016
- Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017
- Tell Me Where to Look: Guided Attention Inference Network, CVPR 2018

• Motivation

CNN have remarkable localization ability despite being trained on image level labels.

• Application

Weakly supervised object localization and CNN visualization

$$F_k = \sum_{x,y} f_k(x,y)$$

$$S_c = \sum_k w_k^c \sum_{x,y} f_k(x,y) = \sum_{x,y} \sum_k w_k^c f_k(x,y).$$

$$M_c(x,y) = \sum_k w_k^c f_k(x,y).$$

$$S_c = \sum_{x,y} M_c(x,y).$$

Mc(x, y) directly indicates the importance of the activation at spatial grid(x, y) leading to the classification of an image to class c.

Results

		rice rundunen e
Networks	top-1 val. error	top-5 val. error
VGGnet-GAP	33.4	12.2
GoogLeNet-GAP	35.0	13.2
AlexNet*-GAP	44.9	20.9
AlexNet-GAP	51.1	26.3
GoogLeNet	31.9	11.3
VGGnet	31.2	11.4
AlexNet	42.6	19.5
NIN	41.9	19.6
GoogLeNet-GMP	35.6	13.9
-	1	1

Table 1.	Classification	error on	the ILS	VRC	validation s	set.
----------	----------------	----------	---------	-----	--------------	------

Table 3. Loc	alization	error	on t	he	ILSVRC	test	set	for	various
weakly- and	fully- sup	ervise	d me	etho	ods.				

Method	supervision	top-5 test error
GoogLeNet-GAP (heuristics)	weakly	37.1
GoogLeNet-GAP	weakly	42.9
Backprop [23]	weakly	46.4
GoogLeNet [25]	full	26.7
OverFeat [22]	full	29.9
AlexNet [25]	full	34.2

Table 2. Localization error on the ILSVRC validation set.	Back-
prop refers to using [23] for localization instead of CAM.	

Method	top-1 val.error	top-5 val. error
GoogLeNet-GAP	56.40	43.00
VGGnet-GAP	57.20	45.14
GoogLeNet	60.09	49.34
AlexNet*-GAP	63.75	49.53
AlexNet-GAP	67.19	52.16
NIN	65.47	54.19
Backprop on GoogLeNet	61.31	50.55
Backprop on VGGnet	61.12	51.46
Backprop on AlexNet	65.17	52.64
GoogLeNet-GMP	57.78	45.26

We first segment the regions of which the value is above 20% of the max value of the CAM. Then we take the bounding box that covers the largest connected component in the segmentation map.

We follow a slightly different bounding box selection strategy here: we select two bounding boxes (one tight and one loose) from the class activation map of the top 1st and 2nd predicted classes and one loose bounding boxes from the top 3rd predicted class. This heuristic is a trade-off between classification accuracy and localization accuracy.

Dome:	圆屋顶	
Palace:	宫廷,	豪宅
church::	教堂	I
Altar: 💈	祭坛,	圣坛
Monaste	ry: 僧	逐道院

Figure 5. Class activation maps from CNN-GAPs and the class-specific saliency map from the backpropagation methods.

We apply a ReLU to the linear combination of maps because we are only interested in the features that have a *positive* influence on the class of interest, *i.e.* pixels whose intensity should be *increased* in order to increase yc. Negative pixels are likely to belong to other categories in the image.

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, ICCV 2017

7

Figure 1: (a) Original image with a cat and a dog. (b-f) Support for the cat category according to various visualizations for VGG-16 and ResNet. (b) Guided Backpropagation [42]: highlights all contributing features. (c, f) Grad-CAM (Ours): localizes class-discriminative regions, (d) Combining (b) and (c) gives Guided Grad-CAM, which gives high-resolution class-discriminative visualizations. Interestingly, the localizations achieved by our Grad-CAM technique, (c) are very similar to results from occlusion sensitivity (e), while being orders of magnitude cheaper to compute. (f, l) are Grad-CAM visualizations for ResNet-18 layer. Note that in (c, f, i, l), red regions corresponds to high score for class, while in (e, k), blue corresponds to evidence for the class. Figure best viewed in color.

8

Method	Top-1 loc error	Top-5 loc error	Top-1 cls error	Top-5 cls error
Backprop on VGG-16 [40]	61.12	51.46	30.38	10.89
c-MWP on VGG-16 [46]	70.92	63.04	30.38	10.89
Grad-CAM on VGG-16 (ours)	56.51	46.41	30.38	10.89
VGG-16-GAP (CAM) [47]	57.20	45.14	33.40	12.20

Table 1: Classification and Localization on ILSVRC-15 val (lower is better).

- Supervised by only classification loss, attention maps often only cover small and most discriminative regions of object of interest
- Bias in the training data(the foreground object incidentally always correlates with the same background object)

Tell Me Where to Look: Guided Attention Inference Network , CVPR 2018

$$T(A^{c}) = \frac{1}{1 + \exp(-\omega (A^{c} - \boldsymbol{\sigma}))}$$
$$I^{*c} = I - (T(A^{c}) \odot I),$$
$$L_{am} = \frac{1}{n} \sum_{c} s^{c} (I^{*c}),$$

$$L_e = \frac{1}{n} \sum_{c} (A^c - H^c)^2,$$
$$L_{ext} = L_{cl} + \alpha L_{am} + \omega L_e,$$

where $s^c(I^{*c})$ denotes the prediction score of I^{*c} for class c. n is the number of ground-truth class labels for this image I.

Results

Methods	Training Set	val.	test			
		(mIoU)	(mIoU)			
Supervision: Purely Image-level Labels						
CCNN [19]	10K weak	35.3	35.6			
MIL-sppxl [20]	700K weak	35.8	36.6			
EM-Adapt [18]	10K weak	38.2	39.6			
DCSM [25]	10K weak	44.1	45.1			
BFBP [23]	10K weak	46.6	48.0			
STC [52]	50K weak	49.8	51.2			
AF-SS [21]	10K weak	52.6	52.7			
CBTS-cues [22]	10K weak	52.8	53.7			
TPL [10K weak	53.1	53.8			
AE-PSL [51]	10K weak	55.0	55.7			
SEC [12] (baseline)	10K weak	50.7	51.7			
GAIN (ours)	10K weak	55.3	56.8			
Supervision: Image-level Labels						
(* Implicitly use pixel-level supervision)						
MIL-seg* [20]	700K weak + 1464 pixel	40.6	42.0			
TransferNet* [9]	27K weak + 17K pixel	51.2	52.1			
AF-MCG* [21]	10K weak + 1464 pixel	54.3	55.5			
GAIN _{ext} * (ours)	10K weak + 200 pixel	58.3	59.6			
GAIN _{ext} * (ours)	10K weak + 1464 pixel	60.5	62.1			

Table 1. Comparison of weakly supervised semantic segmentation methods on PASCAL VOC 2012 *segmentation val.* set and *segmentation test* set. **weak** denotes image-level labels and **pixel** denotes pixel-level labels. *Implicitly use pixel-level supervision* is a protocol we followed as defined in [51], that pixel-level labels are only used in training priors, and only weak labels are used in the training of segmentation framework, e.g. SEC [12] in our case.

Figure 4. Qualitative results on PASCAL VOC 2012 segmentation val. set. They are generated by SEC (our baseline framework), our GAIN-based SEC and GAIN_{ext}-based SEC implicitly using 200 randomly selected (2%) extra supervision.

Figure 5. Qualitative results of attention maps generated by Grad-CAM [24], our GAIN and GAIN_{ext} using 200 randomly selected (2%) extra supervision.

THE END!